

NCDSNS (Dec 2023)

1 | P a g e

Pratibodh
A Journal for Engineering

A free and Open Access Journal
Homepage: https://pratibodh.org

Analysis on Java Enterprise Web Development

Design and Development of Enterprise Web Application
Himanshu Bishnoi1, Khushveer Singh Gurjar2,Mohammad Ahmad3,Neelkamal Chaudhary4

Artificial Intelligence and Data Science
Jaipur Engineering College and Research Centre

 Sitapura, Jaipur, Rajasthan 302022
1himanshubishnoi.ai25@jecrc.ac.in

Abstract
Java, as a versatile programming language, forms the foundation of web application development through its technologies,
namely JSP (Java Server Pages), Servlets, and core Java. JSP simplifies dynamic web content creation by seamlessly
integrating Java code within HTML pages. Servlets, Java-based server-side components, handle HTTP requests, and enable
the execution of server-side logic. These technologies collectively empower developers to create interactive and data-
driven web applications efficiently. In parallel, core Java extends its utility beyond web development, serving as a cross-
platform language renowned for its portability, security, and extensive ecosystem. This abstract explores the key roles of
JSP, Servlets, and core Java, highlighting their significance in building diverse applications, from dynamic web interfaces to
robust enterprise systems.

Article Status Keywords: JSP,JDBC,SERVLET,IMAGE,PDFCELL.

Available online

2024 Pratibodh Ltd. All rights reserved.

1. Introduction

In the dynamic and ever-evolving landscape of web
development, Java has emerged as a robust and versatile
programming language that plays a pivotal role in the
creation of feature-rich and scalable web applications.
With its extensive ecosystem of tools and frameworks,
Java empowers developers to craft web solutions that
are not only efficient but also capable of handling
complex business logic. This research paper delves into
the realm of Java web development, focusing on the
integration of core Java, JDBC (Java Database
Connectivity), Servlets, and MySQL to create compelling
web applications.

The combination of Java, JDBC, Servlets, and MySQL
forms a formidable stack that equips developers with the
tools necessary to build web applications that seamlessly
interact with databases, handle user requests, and
deliver dynamic content. This paper will explore the
individual components of this stack, highlighting their
significance in the web development process, and
demonstrate how they can be harnessed collectively to
build modern, data-driven web applications.

As we progress through this research, we will delve into
the fundamental concepts of each technology, exploring
how they contribute to the web development process.
We will also discuss best practices, design patterns, and
practical examples that showcase the synergy between
Java, JDBC,

Servlets, and MySQL, enabling developers to build
efficient and maintainable web applications
.Furthermore, this paper will shed light on the
importance of database integration, the role of Servlets
in handling HTTP requests and responses, the power of
core Java in implementing business logic, and the
robustness of MySQL as a relational database
management system. By the end of this research, readers
will have a comprehensive understanding of how these
technologies can be harnessed to create dynamic and
interactive web applications that meet the demands of
today's digital world.

In a rapidly evolving web development landscape, the
knowledge and expertise in Java, JDBC, Servlets, Core
Java, and MySQL are invaluable assets for developers
seeking to build web applications that are not only
functional but also scalable, secure, and responsive to
user needs. This research paper aims to serve as a
valuable resource for developers, students, and
enthusiasts looking to master the art of Java web
development through the integration of these powerful
technologies.

Pratibodh – A Journal for Engineering

2 | P a g e

II.Web Application Architecture using MVC Design
Pattern:

Using the Model-View-Controller (MVC) design pattern
in Java is a common approach for building scalable and
maintainable applications. Here's a high-level overview
of how you can implement MVC in a Java application:

1.Model:

Define your data structures and business logic. These
represent the core functionality of your application.

Create Java classes that encapsulate data and provide
methods to interact with that data.

Examples of Models can include classes that represent
entities in your application, like User, Product, Order, etc.

2.View:
Implement the user interface (UI) using Java's Swing,
JavaFX, or a web-based framework like Java Servlets and
JSP (JavaServer Pages).
Views are responsible for rendering data from the Model
and displaying it to the user.
They should not contain business logic; their main role is
to present data and capture user input.

3.Controller:
Create Java classes that act as controllers. These classes
handle user input and coordinate interactions between
the Model and View.
Controllers receive input from the View, process it, and
update the Model as necessary.
They also update the View to reflect changes in the
Model's data.
Controllers act as the glue that binds the Model and View
together.

Here's a step-by-step example of how you might shown
in (fig1.)

 Fig1. MVC Design.

(III).Web Application Architecture in Java EE Edition.

Web application architecture in the Java EE (Enterprise
Edition) platform is designed to provide a robust,
scalable, and enterprise-grade framework for building
large-scale web applications. Java EE offers a set of APIs

and services for developing and deploying web
applications that can handle high traffic loads and
complex business logic[1]. Here's an overview of the key
components and concepts in Java EE web application
architecture:as shown in (fig2.)

I.Servlets and JSP (JavaServer Pages):

Servlets and JSP are the fundamental building blocks of
Java EE web applications.

Servlets handle HTTP requests and generate dynamic
content, such as HTML, XML, or JSON, as responses.

JSP is a technology for creating dynamic web pages by
embedding Java code within HTML[7] as shown in fig3.

Together, they provide the presentation layer of your
application as shown in fig4 & fig5.

II.Enterprise JavaBeans (EJB):

EJBs are server-side components that encapsulate
business logic, providing a way to implement the Model
layer of your application.

There are three types of EJBs: Session Beans (stateless
and stateful), Message-Driven Beans, and Entity Beans
(less common in modern Java EE).

Session Beans are used for managing application state
and processing business logic.

III.JPA (Java Persistence API):

JPA is a Java EE standard for object-relational mapping
(ORM), allowing you to interact with relational
databases using Java objects.

JPA simplifies database access and management,
enabling you to work with entities and relationships in a
more object-oriented manner.

IV. Web Services:

Java EE supports the creation of web services using
technologies like JAX-RS (for RESTful services) and JAX-
WS (for SOAP-based services).

Web services enable interoperability and
communication with other systems, making Java EE
suitable for building distributed and SOA (Service-
Oriented Architecture) applications.[3]

V. Contexts and Dependency Injection (CDI):

CDI is a powerful Java EE feature that simplifies the
management of beans and their dependencies within the
application.

It provides a standardized way to define and inject
beans, improving modularity and testability.

VI. Security:

Java EE offers robust security features, including
authentication, authorization, and secure
communication through SSL/TLS.[4]

Pratibodh – A Journal for Engineering

3 | P a g e

You can configure security constraints and roles to
protect resources and restrict access to specific parts of
the application.

VII. Messaging:

Java EE provides messaging capabilities through
technologies like JMS (Java Message Service) and
Message-Driven Beans, facilitating asynchronous
communication within the application or with external
systems.

VIII. Transaction Management:

Java EE supports declarative transaction management,
allowing you to define transaction boundaries for EJBs
and other components.

It ensures ACID (Atomicity, Consistency, Isolation,
Durability) properties for database operations.

IX. Packaging and Deployment:

Java EE applications are typically packaged as WAR
(Web Application Archive) or EAR (Enterprise Archive)
files.

These archives contain all the necessary components,
libraries, and configuration files for deployment to a Java
EE-compatible server (e.g., Tomcat, Wild Fly, Glass Fish).

X. Scalability and Clustering:

Java EE platforms often support clustering and load
balancing to distribute application workloads across
multiple servers, improving scalability and fault
tolerance.

 Fig2. Web Architecture In Java EE.

IV. How Dynamic Content Display? Backend Approach:

JSP (Java Server Pages) is a technology used for
developing web applications in Java. It is particularly
useful for displaying dynamic content on web pages as
shown fig5. Here's how JSP is useful in achieving this:

1.Integration: Seamlessly integrates Java code within
HTML pages.

2.Dynamic Content: Allows server-side generation of
dynamic content. Code shown in Fig12.

3.Reusability: Supports creation of reusable components
for easier maintenance.

4.Server-Side Processing: Ensures secure and controlled
data processing on the server.

5.Java EE Integration: Works well with Java EE for
building robust web apps.

6.Session Management: Provides session handling for
user-specific data.

7.Expression Language (EL): Simplifies dynamic data
insertion.

8.Tag Libraries: Offers pre-built tags for common tasks
and better code organization.

 Fig3. Various Tags Used in jsp between Html Tags.

 Fig4.How it is used in html block.

Pratibodh – A Journal for Engineering

4 | P a g e

RESULT

 Fig5.Result of following Code

V. Server Side Handling Using Servlet:
A servlet is a Java programming language class that is
used to extend the capabilities of servers that host
applications accessed by means of a request-response
programming model. Although servlets can respond to
any type of request, they are commonly used to extend
the applications hosted by web servers.[3]For such
applications, Java Servlet technology defines HTTP-
specific servlet classes.

 (JSP Page greet.jsp) as shown in Fig6. Jsp
Page(client side).[1]

<!DOCTYPE html>
<html>
<head>
 <title>Greeting Page</title>
</head>
<body>
<h1>Greeting Page</h1>
<form action="greet" method="post">
 Enter your name: <input type="text" name="name" />
 <input type="submit" value="Submit" />
</form>
<p>
 <%
 String greeting = (String)
request.getAttribute("greeting");
 if (greeting != null) {
 out.println(greeting);
 }
 %>
</p>
</body>
</html>

 (Sever Side Page Greeting.java) as shown result (fig7.)

package com.pkg.falcon;
import java.io.IOException;
import jakarta.servlet.ServletException;
import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;
import jakarta.servlet.http.HttpServletRequest;

import jakarta.servlet.http.HttpServletResponse;

@WebServlet("/greet") // Use the @WebServlet
annotation to define the servlet mapping
public class GreetingServlet extends HttpServlet {
 protected void doPost(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException {
 // Get the user's name from the request parameter
 String name = request.getParameter("name");

 // Create a greeting message
 String greeting = "Hello, " + name + "!";

 // Set the greeting message as an attribute in the
request
 request.setAttribute("greeting", greeting);

 // Forward the request to the JSP for displaying the
greeting

request.getRequestDispatcher("/greet.jsp").forward(req
uest, response);
 }
}

 RESULT

Fig 6.By hitting submit request is transfer to servlet

Pratibodh – A Journal for Engineering

5 | P a g e

 Fig7.Servlet Response

VI. JDBC And My Sql Role in Functioning Backend Part of
Project.

JDBC (Java Database Connectivity) and MySQL play
essential roles in the backend part of a web application
for displaying dynamic content. Let's break down their
roles:

1.MySQL (Database):

MySQL is a relational database management system
(RDBMS) that stores and manages data.
It is commonly used as a backend data store in web
applications because it provides a structured way to
organize and retrieve data.[4]
MySQL stores data in tables with rows and columns,
making it suitable for a wide range of applications.

2.JDBC (Java Database Connectivity):

JDBC is a Java-based API that allows Java applications to
interact with relational databases, including MySQL.
It provides a standard interface for connecting to
databases, executing SQL queries, and processing query
results.
JDBC enables Java developers to perform various
database operations, such as inserting, updating,
deleting, and retrieving data from a MySQL database.[2]
Here's how MySQL and JDBC work together to enable
dynamic content in a web application:

1. Data Storage: MySQL serves as the backend data
storage where you store information like user
profiles, product details, and more.

2. Data Retrieval: JDBC is used in the backend Java
code (e.g., servlets or server-side controllers) to
connect to the MySQL database, execute SQL
queries, and retrieve data based on user
requests. For example, you might retrieve user

records or product information from the
database.[2]As shown in fig8.

3. Data Processing: Once data is retrieved using

JDBC, it can be processed and manipulated in
Java to prepare it for display. This may include
formatting, sorting, and filtering data as needed.

4. Dynamic Content Generation: After processing,

the Java code generates dynamic content based
on the retrieved data. This content can be in the
form of HTML, JSON, XML, or any other format
suitable for the web application.

5. Display: The dynamically generated content is

then sent to the client-side (e.g., a web browser)
as part of an HTTP response.[7]The client-side
technology (e.g., HTML, JavaScript, CSS) renders
this content, making it visible to the end user.

 Fig9 JDBC Connection[4]

Pratibodh – A Journal for Engineering

6 | P a g e

 Fig 8.Connection call and Query Fetch

VII. How Jdbc Useful In File Handling.
Some function and class of core java is used to handle the
file handling task like uploading profile pic or
downloading when the user register first time in any
website a default value is passed in databases table for
getting the default value for the first time and then it is
update by with the help of simple Sql Query[8]. As
shown in Fig10 code.

 Fig10. setting pic path and update in DB.

Fig11.Getting session pic name at another jsp page

Fig12. Setting file path in img tag.

 VIII. Conclusion
Java technology, encompassing JSP, JDBC, Servlets, and
Jakarta EE, is a cornerstone of modern software
development. It offers a unique blend of platform
independence, making it possible to write code that can
run seamlessly across diverse environments. Servlets
and JSP facilitate dynamic web content and user
interactions, with Servlets handling the core logic and
JSPs taking care of the presentation layer. JDBC
simplifies database connectivity, allowing developers to
work efficiently with relational databases. Jakarta EE,
formerly known as Java EE, empowers the creation of
scalable and robust enterprise applications, providing
essential features like transaction management,
messaging, and security[5]. The extensive Java
community, vast documentation, and rich library
ecosystem foster collaboration and innovation.
Furthermore, Java prioritizes security and reliability,
employing automatic memory management and robust
exception handling. In summary, Java technology's
adaptability, reliability, and community support make it
a foundational choice for building a wide range of
software applications, from web solutions to large-scale
enterprise systems.

Pratibodh – A Journal for Engineering

7 | P a g e

References
[1]. Smith, J. (2020). Java Web Development: A Comprehensive Guide.
Web Development Journal.
[2]. Brown, A., & Davis, C. (2018). Mastering JDBC: Best Practices and
Techniques. Database Technologies.
[3]. Web Developer's Association. (2019). Core Java for Web
Applications. Web Development Insights.
MySQL Documentation Team. (2021). MySQL: The Definitive Guide.
MySQL Publishers.
[5]. Flanagan, D. (2018). Java in a Nutshell: A Desktop Quick Reference.
O'Reilly Media.
[6]. Oracle. (2022). Java Persistence API (JPA).

